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ABSTRACT 
.--* 

report, the seventh of a series >: presents a theoretical 

visco seal when operating in  turbulent flow. The general 

was to modify the Navier-Stokes equations for use in 

1- L 

Using a n  approach similar to  that of S . I. Pai , the velocity 

profile in  the seal was represented a s  a power series and a solution of the 

resulting fiow eqaatiens resulted in  a n  equation for the sealing coefficient 

suitable for laminar or turbulent flow. 

An approximate method has been devised wherein the friction 

data for ordinary pipe flow can be utilized to determine the experimental 

factors in  the sealing equation. From the experimental study of ten seal 

geometries it was observed that the agreement between theory and experi- 

ment was quite satisfactory for purpo$es of seal design. 
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CHAPTER I 

INTRODUCTION AND ANALYTICAL HISTORY OF THE VISCO SEAL 

I. INTRODUCTION 

The visco seal, which has  been referred to  in  literature as screw 

seal, spiral groove seal, threaded seal,  viscosity pump, and viscosity 

seal, is a rotating device which wil l  develop a pressure gradient in  the 

fluid annuhis around a shaft by means of helical grooves located either 

on the shaft or in  the housing, The basic elements of a visco seal are 

shown in Figure 1. Since there is normally no contact between the rotating 

shaft and the housing, the visco seal has  been considered for use in critical 

apparatus which require long life, such as liquid metals systems in  space \ 

power plants and pumps and compressors in nuclear power reactor systems 

as well  as in  various pumps, compressors, and turbines in  more conven- 

tional systems. The increased interest in  visco sea l  application in  both 

the aerospace and basic industries was the impetus for this work. 

Analytical work on the visco seal has  been limited primarily to 

the laminar flow case. The means of predicting the operation of the visco 

seal in  the turbulent region has  been, in  the main, empirical. The object 

of this study is to  develop a theory for predicting the performance of the 

visco seal when operating in  the turbulent range, and to determine the 

correlation between the theory developed and experimental evidence 

obtained for a number of seal geometries. 

XI. HISTORICAL PRESENTATION OF LAMINAR VISCO SEAL ANALYSES 

The first notable laminar analysis of the visco seal was  presented 

by Rowell ana Piniaysorl r l l  L A J  

equations for two-dimensional incompressible flow and assuming the clearance 

between the screw and housing to be zero, Rowell and Finlayson developed 

an  equation for the discharge from a visco pump which neglected the effects 

L~~ * -  - Q+=tinc _-_____ with the Navier-Stokes 

l X u z - h s s  t_n_ brackets refer to similarly numbered references listed at the 
end of this report. 
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of the screw helix angle, a .  This equation is: 

inh 
1 

Q = 2 j 2  [* i=l i3 (cosh- + 1) 

Equation (1) was believed to  be suitable for visco pumps having a small 

helix angle. When the helix angle was large enough to  be significant 

Rowell and Finlay son recommended that the discharge be evaluated as: 

8U cos CY 
x3 r i= 1 

inh tanh 2' 
13 

While Rowell and Finlayson were considering the device as  a pump which 

could obtain a theoretical maximum efficiency of 3 3 . 3 3  per cent they 

envisioned the visco pump being operated at shut off head or no-flow 

condition, thus becoming a visco seal. Setting the discharge equal to 

zero ana dt:fiiiinS 2 sealing coefficient equation 2 becomes: 

i= 1 i5 
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It is noted that the sealing coefficient i n  equation 3 depends upon the groove 

depth, groove width, and helix angle, but does not distinguish between 

laminar and turbulent operation. Thus, the sealing pressure developed would 

be a linear function of the shaft speed. Rowel1 and Finlayson considered the 

geometry of the grooves in  regard to their effect on the  pump performance but 

did not attempt to  establish an optimum seal geometry. 

Whippie 121 devehped B theory for the pressure distribution and 

load capacity for a herringbone type thrust bearing. His equations can be 

transformed to  apply to the present seal geometry. The equation for the 

sealing coefficient based on Whipple's work becomes: 

- 6 P U L  - - 
(w.) A P c 2  S.C.  

Whipple determined the optimum geometry, giving a minimum value of the 

sealing coefficient a s  10.96, resulting when B = 3.61, T= 0.5,  and a = 

13.75".  Hughes [3] utilized the results of Whipple's equation in  con- 

structing a visco sea l  and experimentally showed that the sealing pressure 

c a m e  within 12 per cent of the theoretical value predicted by equation (4). 

Zotov [4] assumed the flow to  consist of three components: 

the annulus flow parallel to  t h e  shaf t  axis due to the pressure gradient, 

the flow along the grooves caused by the pressure gradient, and the flow 

along the grooves due to  the rotation of ine shaft. The three flow 

components were identified as: land pressure flow, 

4nDA Pc2 (a + b) 
ru= Q r =  m I 

groove pressure flow 

(5) 



2 fiD a P jh tan a s in  a 
12 PL (a + b) Qg = k I 

and groove rotational flow, 

nD U hj  s i n a  

where the factors m and k are given by: 

-0.75 
m =  5.31 x 

and 

(3 k =  1 -  0.63 

when 0 cd < 0.8. Combining equations (5) , (6), and (7) to form the total 

flow, and setting th i s  quantity equal to zero, which represents the condition 

of sealing, the sealing coefficient becomes: 

C 

Equation (8) is a function of groove width, land width, helix angle, groove 

depth, imd c!earsr?ce. E-quation (8) does not, however, take into account 

turbulence. As the  rotational speed increases,  Zotov's theoretical seal- 

ing coefficient, l ike  Rowel1 and Finlayson's and Whipple's,will remain 

constant. Optimizing Zotov' s equation produces a sealing coefficient of 

8.69 for a screw geometry of T= 0.63, 01 = 1 4 . 5 O ,  and B = 4.12. 

One of the earliest reports in  which experimental data are re- 

corded either for a visco pump or a visco sea l  operating in the  turbulent 

region was  presented by Frossef [5] . Limited a r ~ l y t i c a l  work is 
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incorporated in  this paper which is primarily devoted to reporting experi- 

mental data for the various screw threads tested.  Frossel uses  an equation 

developed by Gumbel to describe the discharge from the visco pump as: 

n j h  (Ucosa - -  h2 ") 
6cc d l  

Q =  

In developing equation (9), Gumbel assumed one dimensional flow along 

the grooves only. Thus equation (91, writtenf in te rms  of the s e a l i ~ g  coef- 

ficient, becomes: 

- 6 UL - - I-(= h2 t ana  
(G.) a P S.C. 

Frossel concludes that for a visco pump the trapexoidal thread shapes 

are the mos t  practical, since they have the largest flow cross-section 

with the lowest fricitional loss. Frossel notes in  his discussion that a s  

the shaft speed was increased, discontinuities occurred in  the data 

which were attributed to turbulence. Frossel made no attempt,  however, 

to predict the point where turbulence occurs or how the visco pump should 

behave during turbulent operation. 

Asanuma [ I  6 analyzed the performance of the visco pump by 

considering the pump delivery to be composed of two parts: actual 

delivery and flow leakage. Asanuma's equation for the sealing coefficient 

was: 

where 

c1 = (y) - 7 8B2 (:E{% sin? [cos- isc  - (-l)i] tanh 
N l  
W 

8 
1 i= 1 

in 28 (3 
I 
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L 
Setting equation (14) equal to zero, McGrew and McHugh's sealing coef- 

ficient becomes: 

and 

- 7- 

L 

c 2 =  ( B - 112 (B + 2) + -+ P1-(y) ] 
B3 B 

In equation (1 1) the sealing coefficient is a function of groove width and 

depth, clearance , land width , and helix angle , but is independent of 

rotational speed. Asanuma suggests that the best sealing coefficients 

will be obtained for r=  0 . 5 ,  a = 10" to 1l0 and B = 6.0.  

I 

I 

McGrew and McHugh [ 71 reported experimental data obtained 

from tests in both laminar and turbulent operation and presented an  ana- 

lytical solution for the sealing performance under laminar conditions. 

McGrew and McHugh , following the work of Zotov, assumed that the total 

flow in the pump is comprised of three main components: a flow due to 

shear, a minus pressure flow in the grooves , and a negative leakage flow. 

The equation for the total flow in the pump becomes: 

3 nh (s* - a) cos a sin a A. P 2 
- n h U (s* - a) cos a 

12p L Q =  
2 ( l + f )  

EZ B S C 3 A P  
1 2 1 n a L  

3 nh (s* - a) cos a sin a A. P 2 
- n h U (s* - a) cos a 

12p L Q =  
2 ( l + f )  
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where 
2 E =  1 +  1.56 

The theoretical s e a h g  coefficient in  equation (1 5) is a function of clearance, 

groove depth, groove and land widths I helix angle,  and eccentricity ratio 

but is independent of speed . Minimizing the sealing coefficient, equation 

(15) produces a sealing coefficient of 9.83 for 7 = 0.5, 01 = 21,6O, and 

B = 3.78. For the turbulent analysis of the visco seal McGrew and McHugh 

employed a Prandtl mixing length type of solution, and expressed the axial 

pressure 

equation 

describe 

gradient in  t e r m s  of three experimentally determined factors. The 

which best fits McGrew and MeHugh's data,  and the one used to 

operation in  the turbulent region is: 

The empirical factors in  equation (16) were obtained from the data 

for a single screw geometry and affords no provision for a change in  seal 

geometry. 

turbulent flow was published by King [8] who used the equation, 

A recent source of data for the operation of the visco seal 

- 1  - 

U L  
S;C. , ,  \ - - - L= 3 3 [ C3 + C4 R e l g ]  I 

c- n P m e /  

in 

(17) 

develQped by McGrew and McHugh. King fits equation (17) to his experi- 

mental data and can therefore determine the experimental constants. 

operation of the visco seal  was presented by Boon and T a l  [g] . Stair [lo] , 
whose laminar analysis of the seal parallels Boon and Tal's, both refines and 

expsnds the equations developed by Boon, arriving at a sealing coefficient 

Of: 

The analytical solution which appears to best describe the laminar 
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2 
- 1 )  . 3 - - & - B3 (1 + t2) + t2 7 (1 - 7) (p 

- 2  S.C. 
C A P 

Equation (18) is dependent on land and groove width, groove depth, clear- 

ance,  and helix angle. Optimizing equation (18) results in  a sealing 

coefficient of 10.97 for a seal having r= 0.5, B = 3 .65 ,  a n d a  = 15.68O. 

III. COMPMUSOPU' OF LAMINAR -LQALYSES FOR THE VISCO SEAL 

A comparison of the laminar analyses for the visco seal is pre- 

sented in Figure 2. All theories are compared using the s a m e  geometrical 

screw configuration of 7 = 0 . 6 3 ,  B = 3 . 3 8 ,  and a = 14. So . The sealing 

coefficients in Figure 2 were computed as 

6 b ! U L  

C A P  
2 I 

which required modification of some equations in order to  gain a common 

ground for comparison. Rowel1 and Finlayson's and Gumbel's equations , 
both of which were derived neglecting the leakage flow across the lands,  

appear to be considerably in  error, while the predictions of McGrew and 

McHugh (E = 0) , Zotov, Whipple, Asanuma, and Boon and Ta l  compare more 

favorably with the experimental values. 

The approach taken in  this work will be to extend Boon and Ta l ' s  

laminar analysis for the sealing coefficient of the visco sea l  to  both laminar 

and turbulent operation. 

I 



- 10- 

'0 
c 

I 

3 
0 
c 

i? w 

k 
0 
c 

4 
4 
a, m 
0 u m 
-4 > 
a, 
5 
8 
yc 

m 
a, 
L 
0 
a, 

4 

s 
4 
4 u 
h 

4 
a c 
4 
4 
4 a 
m 
a, 

4 c 

4 

0 
c 
0 m 

-4 
c, 

4 z 

c, 

c, 

c, 
L 

3 
4 

+I 

4 

9 
E" 
0 u 
cv 

2 

;z 
7 e 



-11- 

CHAPTER I1 

DEVELOPMENT OF THE SEALING COEFFICIENT 

I .  BASIC FLOW EQUATIONS 

In analyzing the flow in the visco seal it will be assumed that 

the f i lm thickness is s m a l l  as compared to the radius. Hence, neglecting 

the curvature of the seal the problem reduces to the one shown in  Figure 3 .  

It is noted, however, that for smai i  diameter shafts and high rotational 

speeds this assumption becomes less valid due to the centrifugal acceler- 

ation of the fluid. The basic describing equations will be written in  the 

( , 7 
coordinates. The two sets of coordinate axes are related by: 

= cos a + y s in  a 

, and z coordinates and later transposed to the x, y ,  and z 

(19) 

(2 0) 

and 

71 = y c o s a - x s i n c r  . 
The Navier-Stokes equations for a Newtonian fluid, neglecting 

body forces and assuming that the flow is incompressible, steady, and 

laminar, are: 

and 

The law of continuity requires that: 

To apply equations (2 1) through (24) to  turbulent flow , the instan- 

taneous velocity component may be considered to contain two parts: the 

mean velocity component and the turbulent fluctuating component. This 

esncept can also be applied to the pressure. Therefore: 
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- 

u = u + u ' t  

V'V+V'# 

w = w . + w ' ,  

- 
- 

and - 
P=P+P'. 

"sing equations (2 5) through (28) in equations (2 1) through (24j and t i m e  

averaging and combining equations (2 1) through (24) the Reynolds equations I 

as reported by Pai [ll] I are formed. Hence: 

and 

In equations (29) through (31) I all three turbulent fluctuating 

velocity components are assumed to be of the same order of magnitude. 

Noting that  Az is sma l l  as compared to  A[ and A? 

negligible with negligible pressure change in the z direction, the Reynolds 

equations become: 

- 
and assuming w is 
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I -  
I 
1 

I 

and 

(3 3) 

Equations (32) and (33) are the describing differential equations which will 

be applied to the visco pump and later simplified for the visco seal. 

II. BASIC FLOW EQUATIONS APPLIED TO THE CONDITIONS 

OF THE VISCO PUMP 
In a screw pump, since a>>c and b >> hg, the flow is approxi- 

mated by assuming that it resembles flow between two sets of flat plates: one 

set of plates being separated by the distance c, the other by h 

of this assumption, it should be noted that in  a visco pump the order of 

magnitude of a and b is approximately 100 to 1000 that of c and hg respec- 

tively. The problem now simplifies to that shown in Figure 4. The flow 

equations will  be developed in a general form and the results applied to both 

the grooves and the lands. 

In defense g' 

In order to acquire a solution for equations (32) and (33) as applied 

to a visco pump two parameters are required: the mean velocity distribution 

and a relationship for the turbulent wall shear, 7,. The approach taken in  

this work, therefore, is s imi la r  to the one used by Pai l  in  which the velocity 

distribution for turbulent flow was approximated with a power series. An 

approximation of this nature is required since a functional relationship 

hptween 

problem of turbulent flow between parallel plates for two cases .  The first 

case consisted of the top plate moving with the  bottom one fixed, or turbu- 

lent Couette flow. In the second case the flow is due to a pressure 

gradient, or turbulent Poiseuille flow. In the visco pump both types of 

flow exist. While equations (32) and (33) are non-linear and do not lend 

themselves to the principal of superposition I the approximations used for 
the  mean veiocity profiie are weii benaved convergent series.  xnereiore, 

- 
U?' =Ed 2 ZRd v' ?VI 22.1 z d e s  nr\t exist- Psi 3ll2lyIled the 

-. 
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Figure 4 .  Model for groove and land flow. 
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the flow will  be analyzed as purely Couette and purely Poiseuille and then 

added vectorially to produce an approximation of the total discharge. 

The important physical parameters in  this problem are the shear- 

ing stress at the wall 

viscosity of the fluid 

characteristic length. Rewriting equations (32) and (33) in  a non-dimensional 

form by incorporating the paiazeters i n  Table I ,  they become: 

7 ,  the density of the fluid p , the absolute 

8 the t i m e  averaged velocity of the fluid, and a 

and 
2 

- 1 ?(P+Q) - - -  vlru - -  d2V* Pvl d rh 
6 v* 6' dzX2 5 dz* 

. 
Simplifying, 

and 

(3 5) 

The boundary conditions for equations (36) and (37) as applied to 

the visco pump are: 

a. Poiseuille flow 

* i i l  up=  0 a t z  = -  

1 * * +  vp = 0 a t z  = -  

Couette flow 
* * 

Uct = 0 a t z  = -  1 

* 
& I :  = o  * u cos a! uct = ij2 

1 U 
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TABLE I 

DIMENSIONLESS PARAMETERS 

- 
U U* =- 
1 U 

V 

V 
V* = 

1 

Velocity 5 * direction 

direction l *  Reference veiocity I 

Velocity I 7 * direction 

Reference velocity, 7 * direction 
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I '  
* * 

5 0  a t z  = -  1 

* * 
Vct = -  1/2 sinor at z = 0 

1 V 

* 
a t z  = +  1 - = o  rf b. 

5 * 
atz = +  1 - = o  

r71 

(4 3) 

(44) 

(4 5) 

* - 
= O  a t z = - 1 ,  5 ' ; = 0 ,  v * = o  (4 6) 

- 0  a t z  = - 1 ,  s*= 0 ,  q=o. (4 7) 
* - cg 

mT;I 
Employing the dimensionless parameters in  Table I ,  the shear at 

the walls for Poiseuille and Couette flow are related as follows: 

a. Poiseuille flow 

* 
= +  d U p  a t z * = -  1 + - 

dz* 

dz* 

b. Couette flow 
* 

at  z* = + 1 
uct -- - - R1€ dz* 

J 

- d V> 
- - at z * = +  1. dz* - 

1 d U* 
'6 

-- - 
Rl€ 

dz* + I  - c5 Z * =  

3 

and 

'8 - c 7  z* = 1 d V* -- - 
dz* + r q  

where the ;?ressure gradients in  the * and q* directions 
3 

(48) 

(49) 

to Z* gives: 

(52) 

(53) 

were assumed 
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to be constant. 

Applying the boundary conditions for Poiseuille flow in the 

positive direction, equations (52) and (53) become: 

* 
- z * =  0,  1 -- - 

dz* '2 
and 

Again integrating with respect to Z* , equations 

Z* 
2 R I, * - LL ( 1 - z *  - 2 

and 

0.  

(54) and (55) become: 

dz* , rY 

dz* . 2 

-1 
lT( 

* = -  R1n (1- Z* ) + R  
vP 2 

(54) 

(55) 

(57) 

Since equations (56) and (57) cannot be solved directly because of 

the lack of a functional relationship between r1 and z * ,  an expression for 

Up and Vp, in  terms of a power series of z* , is assumed. The velocity 

distribution in  Poiseuille flow is symmetrical about the center line. There- 

fore. a n  even power series solution wi l l  be used. Hence, 

* * 

2N = cg ( 1 + C l 0 Z *  2 + c 1 1  z* * ' 

and 

where higher order terms are neglected and N and N' are any positive integer 

greater than one. 
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Using the boundary conditions expressed in  equations (38), (39), 
* -  * -  

(48), and (49), and Up - - U g  /ul a t  Z* = 0 and Vp = vg /vl a t  z* = 0, 

equations (58) and (59) become: 

z*2N) , 
Fs - N  1 - Fs 

N -  1 

- 
z*2 + 

and 

In equations (60)  and (6 1) , 

which when simplified become 

and b 
7 

n 
can be expressed as the ratio of the shearing 

and F7 5 Therefore, F 

stress on the wall in  turbulent flow to the  shearing s t ress  on the wall for 

laminar flow with the s a m e  maximum velocity. 

Thus, 



* 

1 .  and 

-2  1- 

I 

1 

t 

- 
ut is found in  terms of the pressure gradient 6?/a[ . Hence, 

and similarly I 

'fhus equations (60) and (61) become: 

* 6' K ' FE - N  
1 1t 
p u l  N -  1 

and 

where 

and 

- N'Fv 

(67) ' N' - 1 Z z*2 + 

I 

N'- 1 ', 
2 

Equations (6 6) and (6 7) are the non- dimensional velocity equations for 

Poiseuille flow in the visco pump. 

Applying the boundary conditions for Couette flow to equations 

(52) and (53) and integrating, the describing equations for the velocity 

become: 
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and 

* 
(Z* + 1) + R dz* . = - R1q 

Because of the inability in evaluating the integral in  equations 

(68) and (69), a power series solution will again be assumed. * However, in 

Couette flow the velocity distribution is not symmetrical about the center 

l ine,  so an  odd power series is used. Therefore, 

* 2M+l 'ct = '15 (1 + C16 z* + C17 z* 1 .  

and 

) I  

2M'+1 * 
(1 + C19 z* + c20 z* 'Ct = '18 

where higher order terms are neglected and M and M' are any positive 

integer. Using the boundary conditions as expressed in  equations (40), (41) ,  

(42),  (43) , (50) ,  and (51),  equations (70) and (71) become: 

2 M - H x  + 1  H t  - 1 
(72) 

*2M+1 
Z 2 M  

z* + * V c o s a  u =r 
ct ( '+ 2M u1 

and 

2 M I - H -  + 1  Hq -' 2M'+1 (73) 
7.* + Z* 1 ,  * U s i n a  , , 

i!Mi 
- 2M' \ A i  

v1 "ct = - 
where 
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Equations (72) and (73) are the non-dimensional velocity equations for 

Couette flow in the 5 * and 7 * directions; 

the vectorial summation of the Couette and Poiseuille velocity components. 

Thus, 

* 
-* The velocity distribution i n  t he  visco pump is represented by 

4 

* * u* = Uct - up 

and 
* * 
c t -  vP v* = v 

or 
1 + 2 M - H  

2M 
HL z*2 

2M 
- Zf + 

and 

1 + 2M' - H, Hn - 1 Z* 2,.t13 
2M' z* + 

2M' 
U sina! v* = - 

1 2 v  

From experimental measurements of Poiseuille flow between paral- 

121 flat plates performed by Laufer [12] , Pai  determined a relation between 
-.--I R T I  - - A  .I- Wh..- 

?? - ?,T 222 r U 1 L U  ZY U A A U  Z 

(76) 

has  not been s 77 
N =  1 - 4 0 2  i 

f- 
and 

" = lo40 F77 As a similar relation between M and H 

experimentally determined, the same relationship that exists in  Poiseuille 

flow will be assumed. Hence, 

and MI and H 
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and 

(7 5) become: 

(7 7) 

u cos a 1 + 1 .8  Hq z* + HS - Z* 2M+l] u* = 
2 . 8  H 

[If 2 . 8 H E  5 u1 

2 1 -  F Z*2N1 - . 4  F5 
z* + UUl 1 . 4  F, - 1 1 . 4  F, - I J d C  

[ 1 +  
- 

1 I n  

and 

2 . 8  H, 
1 +  1 . 8 H ,  

2 . 8  H, 
z* + v* = - 

1 2 v  

2 1 -  F n  -.4 F, 
z* + 

(79) 
yl+ 1,Q FK - 1 1.4 F, - 1  

- 
tu v1 d 7  
Equations (78) and (79) apply to both the lands and the grooves.  

Therefore, the mean velocity components are a s  follows: 

along the lafids, 

- 1 + 1.0 HE 2M+1 

ucOsa  2 [ l+ 2 . 8 H 5  u =  r 

- . 4  Fg 2 1 - FE 
- 1  s 1.4 F - 1 (3 + 1 . 4  F 

[l+ 
E - 4 1  

(+) 2N] ; 
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along the grooves I 

3 

(3 '"3: 

across the  lands I 

1 +  1.8H,  Hh - 
2.8 H,,, ( . I +  2 .8  H,., 

- 
v = -  

2 

2 2" 
-.4 F, l m F h  . (5) ] 2 (%)r [ '+  1.4 F,, - 1 (%I +1.4F, ,  - 1 

- Kin 
4Cc 

i 

and a c r o s s  the grooves, 

U sin a 1 + 1.8 H, 
2 .8  H, 

+ 

- 
v = -  

g 2 

The total flow in the visco pump is composed of three basic 

77 components: 5 directed land flow, 5 directed groove flow and 

directed groove or land flow. The axial velocity components may be 

expressed as: 

Y 

- - 
u = u s i n a  

and - - 
v = v c o s a .  

Y 
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From 

flow 

these velocity components, the flow components Q 

r o r Q q  g 
for the [ land flow is (1 - 7 ) nD and the path width for 

is TaD.  The axial component of the 5 land flow becomes: 

, are computed. For the visco pump the 

groove 

- c/2 
= ( 1 -  7 )  nD u s i n a  dz Qf l- 

or 
(U c co; a s i n a  

1 
= (1 - 7 )  a D  

s in  a 2 
C ($Ir ' 5  (-*)+ 2 N + 1 

- 
4cc  

Similarly, 
h 

U q cos a s i n a  
2 = &D 

L hg K1 s i n a  - 
4 r u  . 

-- u c sin ci cos G - 
2 71' 

= x D  i 
2 

C 

+ 2N' + 1 
c K l n  c o s a  - 

4P 1.4 F,, - 1 
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and 

u s i n a  cos a =nD { -  
T g  Q 

hg2 Klr\cos 01 - . 4  Fn h - 
4rcL 

\ 

1 -8FR 
1 . 4  F,, - 1 1 ,  ' 

The pressure gradients in  equations (86) through (89) can be re- 

written in terms of the axial pressure gradient. Thus, 

3 

and - 
(1-7) (e)r + = - dP dY cosa . 

9 

Substituting equation (90) into equations (86) and (87) and sirnpli#ying using 

the terms in Table 11, the flow components become: 

. 

U c cos a. s in  a 
2 Q f r -  - (1 - 7 )  nD 

s I 

U B c cos a s in  a 
2 

The total flow from the visco pump is: 

V g  

(9 3) 

I 

- 
since 
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TABLE I1 

DIMENS IO NLESS SIMPLIFYING TERMS 

)=+- ( 2 
1 N'- 1 - -  - 2 (Fq - N'F? 

F?l - F77 

0.4 F 

'277 4.2 F?'- 3 

""5 3.92 F i  ' 1 - F  - - 
2 .  

- 1*4Ft- 

I2 = $3 p. t2 

CI 
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Solving for ( d ?/a 7 ) from equation (9 1) and simplifying: r 

Therefore , Q becomes: 
72' 

c U s in  a cos a (p - 1) 

Writing the sine and cosine functions as tangents, the equation for the 

total discharge from the visco pump is: 

+ 7 x D  



-30- 

In equation (96) the only terms to be determined empirically are functions 

which are related to Poiseuille flow. Hence, the 
Of Fl and F77 
assumption involved in  equation (77) is of no consequence in  this solution, 

Applying equation (96) to a visco seal, simplifying with the terms in 

Table 11, and substituting 

the sealing coefficient is formed. Thus, 

6 P U L  I + I  

A =  - 2  C AP =K4 ( 114 2, + K g  (?)a 

In equation (97) when K and K are unity, the equation reduces to the 4 5 
laminar form of the sealing coefficient as in  equation (18). The tenns 

K and K5 i n  equation (97) can be evaluated by two methods. K4 and K5 

could be determined by observing actual test data from the visco seal, 

The solution that will be incorporated in  this work will be to estima$e K4 

and K from experimental data for common pipe flow, This procedure will 

allow K4 and K5, and thus equation (97), to be predicted before any 

experimental data on the visco seal are obtained. 

4 

5 

Pinkus [13] predicted that for rotating concentric cylinders, 

turbulence would be initiated at or before a Reynolds number equal to: 

1/2 
R e s  41.1 [*] . 

For the visco seal a n  average critical Reynolds number is defined as: 

(9 7) 

In Figure 5 ,  which relates resistance coefficients and Reynolds 

numbers for pipe flow, the resistance coefficient for laminar flow is 

represented by the equation: 

64 -- 
f l  A, - Rep 
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Figure 5 .  Resfstance coefficient versus Reynolds number for pipe flow. 
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The coefficient of resistance in  the transition and turbulent regions was 

represented by two lines. One line w a s  estimated by extending a straight 

line from the turbulent smooth pipe curve to its interception with equation 

(100). This line is represented by the  equation, 

corresponding to flow along the grooves. The other line representing the 

flow across the grooves was assumed to be typified by a line constructed 

by extending the turbulent curve for a roughness ratio of approximately 

0 * 03 t o  intercept with equation (100). This line represented by the equation, 

corresponds approximately to the flow through corrugated pipe This 

procedure, of course, represents the transition zone as a straight line. 

Assuming the critical pipe Reynolds number occurs at 

R e  = 2000, 
P 
is evaluated, according t o  equation (62) for a given Reynolds 

the number in  Fi he seal, by computing t h e  ratio of resistance coefficient for 

turbulent flow, using the lower turbulent line in Figure 5,  to the resistance 

coefficient for laminar flow , both at the pipe Reynolds number of, 

R e  = (2000 cos a) I 

P 

is cieiined by aqiiathii ($2) %e ter: F , eqt-mtinn (631 .. 7 where Re  

is evaluated i n  a similar manner except at a pipe Reynolds number of, 
crit . 

Re 
R e  = (2000 s i n a )  C # 

Recrit. P 
(104) 

and using the upper turbulent line in Figure 5. The quantities K4#  which is 

a function of F 

determined 

, and K5, which is a function of F , can now be 
3 It rl 
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When the operation of the seal is laminar, i.e. I 

F$ andFT! are equal to one, K and K are both unity and the sealing co fficient 
4 5 

becomes identical to equation (18). As the speed increases , F increases 

causing K to decrease and thus the sealing coefficient begins i o decrease. 

At even higher speeds,  F also begins to increase causing K to  decrease, 

producing a greater decrease in  the sealing coefficient. A computer pro- 

gram, compiled for an  I.B.M. 7040 c m p t f e r ,  to determine the theoretical 

sealing coefficient is found in Appendix B. 

III. GENERALIZING THE THEORETICAL SEALING COEFFICIENT FOR 

4 

77 5 

LAMINAR AND TURBULENT OPERATION 

In Figures 6 through 9 the theoretical sealing coefficients 

(hereafter referred to as A T) equation (97) , as a function of B for 

various values of Reynolds number I a 8 and 

vations may be made regarding these figures: 

are shown. Several obser- 

1. The optimum screw geometry in the laminar range is not the 

optimum geometry for turbulent operation. As shown in Figure 6 , a seal 

having a n  a of 5.81O has  a minimum sealing coefficient for laminar 

operation when r= 0.5 and B = 6.5. However , when operation becomes 

turbulent the minimum value of the  sealing coefficient is found at higher 

values of r a n d  f3. At higher a values the s a m e  observation can be made. 

However, the shift in  the optimum B becomes smaller. 

2. The f3 producing the minimum sealing coefficient i n  the 

turbulent range increases with increasing Reynolds number. This effect 

is less significant for large a than for s m a l l  a .  
3 .  In both laminar and turbuieni ZG-S , B given change in  B 

A with screws having large a than with produces a greater change in  

s m a l l  a. Thus from the standpoint of pressure stability the lower values 

of a are to be preferred. 

T 

4 .  In laminar operation the optimum 7 for any screw is 0 . 5. 
However, i n  turbulent flow the sealing coefficient is improved slightly 

as 7 is imreased from 0.5 to 0.7. 



P 

I -  

36 

32 

28 

c 24 
C e 
W * 
.. .. 
jj 20 
v 
? 

4- 12 

1 l6 

8 

A 
7 

- 34- 

-1 -n?- 1 cnnn 

3VVV V. Y 

1 I 

I 
0 

1 3 5 9 11 13 15 ' 8  
Figure 6 .  Theoretical sealing coefficient as a function of 8 ,  Rec, 

and )c f a r a =  S ,81° ,  c =  0,003 in,, and D =  1,25 in, 



-35- 

36 

32 

28 

24 
0 
0 
.- .- * 
Tv 20 0 
W 
0, - *E 16 
0 
0 m 
<- 12 

8 

4 

1 3 5 9 11 13 15 7 8  
0 

Pig- 7 .  Thecretical sealing coefficient as a function of B, Re,, 
and r fora = 9.67O, c = 0,063 in., =??d I)= 1 .25  in. 



-36- 

36 

32 

28 

c 

24 
..I, 

12 

8 

4 

0 
1 3 S 9 11 13 1s 

' I 9  
Fiallra 8 Theoretical sealing coefficient as a function of B, Re&, 

and r f o r a = l 4 . S 0 ,  c = 0 . 0 0 3 i n . , a n d f i = i . 2 5 i n .  



-37- 

36 

32 

28 

- 24 t 
0 
U 
.- .- u. 
0 

W 
‘ti 20 

8 

4 

0 
3 5 11 13 15 

Figure 9.  Theoretical sealing coefficient as a function of B,  Re,, 
and Z fora=20 .1S0 ,  c =  0 . 0 0 3 i n . ,  andD= 1.25in.  



-38- 

5. For seals  which mus t  operate in  both the laminar and tur- 

bulent regions, the smaller helfx angles will  give the best values of the 

sealing coefficient for both regions. 

function of 7. As 7 increases the onset of turbulence occurs at lower 

6. The transition from laminar to  turbulent operation is a 

Reynolds numbers. 

of T o n  A at the larger 8 values is rather pronounced. However, a s  

the degree of turbulence increases this effect becomes less pronounced. 

is the same a s  the one 

7. As the visco sea! operstion begins to be turbulent the effect 

T 

A T 8. At a Reynolds number of 100, 

computed in equation (18), which is independent of Reynolds number. 

i 
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CHAPTER III 

TEST FACILITY AND EXPERIMENT PROCEDURE 

I. TEST FACILITIES 

The visco seal test section and drive is shown in Figure 10. 

A detailed description of the design and construction of the experimental 

facility is presented in  Reference 641 . A schematic diagram of the test 

section is shown in Figure 11. The sealant fluid, which was distilled 

water i n  all tests reported 8 was introduced under regulated pressure 

through the sealant inlet. Pressure taps and thermocouples are located 

along the axis of the test sleeve, the dimensional location of which are 

shown in Figure 12 .  Inductance probes located in  two planes and 90" 

apart are used to determine the eccentricity between the test sleeve and 

spindle. A torque arm connected to a strain gage bridge is used to measure 

the frictional torque. Since the torque measured under s o m e  operational 

conditions is very low, the test sleeve is mounted on eight hydrostatic 

bearing pads to  minimize static friction. The dimensions of the test 

spindles are presented in  Table III. T e s t  spindles 1, 2 ,  3, 4, ZB, 3 B ,  

and 4 B shown in Figure 13, were threaded the total seal length. Spindles 

5,  6, and 7 ,  shown in  Figure 13, were constructed with end dams in  order 

to study the end effects of the seal and the phenomenon of air  ingestion. 

11. TEST PROCEDURE 

During a test run the data recorded included spindle speed, 

torque, eccentricity , pressure distribution, and temperature distribution. 

Using the information in  Table 111, the recorded experimental data,  and the 

physical piopafiies of tkc t e s t  f l ~ i c ! ,  the experimental sealing coefficient 

(hereafter referred to  as AE), dissipation function, and the friction 

parameter were calculated. Lambda, dissipation function, and friction 

parameter were plotted versus Reynolds number based on the clearance. 

The quantity aP/L in  equation (97) for A E may be interpreted 

in  two ways. In a practical application this value should be (Psupp~y - 
Patmosphere )/L. However, i n  this study the effect of screw geometry 

on the  sealing coetticient was a iacror of major c;;uiiCBiii. Theiefcjie, ir; 
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order to minimize the end effects, the AP/L was  interpreted as dP/dL and 

evaluated as shown i n  Figure 12. The viscosity of the test fluid was 

evaluated at a n  average temperature determined from the distribution as 

shown in  Figure 12 .  The temperature variation in  the seal was quite s m a l l  

being on the order of 2 degrees F. 
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CHAPTER N 
EXPERIMENTAL RESULTS 

The  geometry of spindle number 1 was made similar to  the one 

employed by McGrew and McHugh for the purpose of comparison of exper- 

imental results. A geometrical comparison of the two test spindles is shown 

in Table IV. 

During the iIlitial tests of spindle 1, a number of minor problems 

were encountered. These problems included a ruptured oil filter, a number 

of pressure tap lines which were quite long and difficult to bleed, a large 

cavity at the inner end of the test seal which proved to  be an air trap, and 

low sensitivity in  the torque measuring bridge. The details of these 

difficulties and corrections are presented in  reference [14] . After modi- 

fication of the test apparatus, the data compared favorably in the turbulent 

range, as shown in  Figure 14, to the experimental curve of McGrew and 

McHugh. In the laminar range, however, the value of McGrew and McHugh's 

experimental curve is higher than the value of the present data,  equation 

(18)' or equation (15) which was derived by McGrew and McHugh. 

I. SEALING COEFFICIENT 

A summary of test results is presented in  Table V. Using the 

theory developed in  Chapter 11, the theoretical sealing coefficient is 

compared with the experimental values in  Figures 14 through 17. 

For all spindles tested I\ E remained essentially constant 

during laminar operation. This result is in  agreement with equation (18) 

which indicates that A # f(Rec) in the laminar region. The average ratio 

of 11 to L \ for i ami rmi  cpeiztisr? is 0-968. During the turbulent 

operation of each of the seals 2, 3, 4, 2B, 3B, and 4B, the ratio of 

remained essentially constant. However, because of the varkation to T 
of slopes i n  the turbulent region for test series 5 ,  6 ,  and 7 ,  the ratio of 

A n 
E T 

E 
A 

A was not constant. 'Eto T 
With the onset of turbulence fl, begins to decrease with 

increasing Reynolds numbers. The Reynolds number at which transition 

from laminar to turbulent operation occurb is a fiinctic?rr of 7 . In test series 
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1 

, 

2 ,  3 ,  and 4, the  three test spindles have essentially the s a m e  a ,  B ,  c, and 

D with variations in 7 only. Spindle 2 ,  having the lowest 7, resulted in  

the longest laminar operational region, while spindle 4, with the largest 7 , 
resulted in the shortest operational laminar region, a5 may be observed in  

Figure 15. Thus, as 7 increases the transitional Reynolds number de- 

creases. The decrease in  the transitional Reynolds number, defined in  

equation (99)# is to be expected since the average clearance in  the seal is 

increasing. This direct relationship between the onset of turbulence and 
.. - 

7 is in  agreement with the theoretical projection in  Chapter 11. 

The relationship between ct h, was demonstrated in  test 

series 5, 6, and 7. The geometric parameters of spindles 5, 6 ,  and 7 are 

essentially the same as for spindles 2 ,  3 ,  and 4 with the exception of a 
which was decreased from 9.67O to 5.81O. In tests of seals having a 's  

of 9.67 and 14. So, the  slope of 4, d A E/dR , in  the turbulent zone 

was approximately - 0.70, which agrees with the theoretical prediction of 
C 

-0.709. However, for an  a of 5 .8l0 the value of d AE/dRc was found to  

be approximately -0.43 for the range of experimental data recorded. The 

relationship between hT and a is demonstrated in  Figure 18. In this 

figure it is observed that AT ,  for 01 equal to 5. 81°, remains laminar to 

a Reynolds number of 300,  while for a equal to  20. 1 S 0 ,  AT begins to 

decrease at a Reynolds number of approximately 100. Therefore, as a 
increases the transition point from laminar to turbulent operation for A 
decreases. However, it is noted from Figure 18 that, for either large or 

s m a l l  a ' s  , the predicted slope, d' A,/dRec, for Reynolds numbers greater 

The effect of @ on A, may be observed in  Figures 19, 20, and 

A, for 2B, 3B, 

T 

--.-I AT ~G z=ot sgree. AI--- l n n n  2 -  AI-- ---- T- ~ 1 - 2 -  _-___ -1 

' 'E ULAu 
L i L a i i  AUUU, 13 L i i c  aaiiic. ~ i i  uua L G y a r u  

21. In series 2B, 3B, and 4B a md 7 remain unchanged from series 2 ,  3,  

and 4, while B was decreased from approximately 7 to 3. 

and 4B is, on the average, 1.29 times the values for spindles 2, 3, and 4 

in  both laminar and turbulent operation. This ratio compares favorably 

with theoretical predictions which indicate that the ratio should be 1.2 8. 
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In test series 2B there is a sudden large increase in  h at a Reynolds 

number of approximately 1600. This discontinuity in  h", is believed to be 

the result of air ingestion which produces a decrease in  the value of B. A 

similar observation was made for spindles 3B and 4 B ,  but the perturbation 

was much lower in  magnitude. 

A forecast of AT for tes t  spindles SA, 6A, and 7A, which have 

yet to  be tes ted,  is shown in Figure 22. 

II. FRICTION PARAMETER AND DISSIPATION FUNCTION 

The power loss i n  the visco seal during laminar operation was 

described by Stair iz terms of a dissipation function defined by the equation: 

t2 7 (1 - 7 ) (B - 112(1 - 7 + TB3) 
P3 (1 + t2) + t2 7 (1 - a:)  (P3 - 1) 2 '  + 3  @ =1-7+-  7 

B 

qc 

xp D L U  
@ =  2 ,  

where q is the power loss.  The dissipation function depends upon 01, B ,  and 

7 and is independent of rotational speed. The friction parameter may be 

defined in  terms of the dissipatidn function as: 

Thus, F.P. is a function of the seal parameters and speed. The laminar experi- 

mental data for the friction parameter are in  agreement with equation (107) as 

shown in Figures 23, 24, and 2 5. The experimental data in the turbulent range 

follows the trend noted by Smith and Fuller p o j  whose Gats fsr the kicticm 

parameter of a plain journal bearing operating under laminar and turbulent 

r- -1 

conditions can be expressed as: 

= 4 n/Rec, F-P2 
and 

0.43 
C 

F.P. = 0.156 x/Re 
c? 
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As the visco seal more nearly approaches a journal bearing, 7 becoming 

smaller, the experimental data for the friction parameter approaches the 

l amina r  experimental curve presented by Smith and Fuller. In the turbulent 

region, however, the experimental data for the seal is approximately 1.0 5 1 

t imes  that of Smith and Fuller's. Thus, in  laminar operation the friction 

parameter is described by equation (107) and during turbulent operation Smith 

and Fuller's turbulent journal bearing results CSTI be utilized to estimate the 

friction parameter. 

III. AIR INGESTION 

The phenomenon designated "seal break" by McGrew and McHugh 

and "secondary leak" by King was not observed directly during this experi- 

mental study. The term "seal break1# refers to a sma l l  l eak  past the seal 

interface. However, i n  the present series of tests, a phenomenon which has  

been termed "air ingestion" was quite evident. Air ingestion is a condition 

in  which air is forced, by the action of the screw exposed to air ,  through the 

seal interface into the seal. During laminar operation air ingestion was not 

obsenred. However, as the speed and degree of turbulence increased, air  

bubbles began to  rise in  the pressure tap  lines. Continuous bleeding would 

not remove the entrapped air  from the system once the condition of air 

ingestion was present. Air ingestioii iei;c?ed tc decrease the  pressure 

gradient near the atmospheric end of the seal, which, in turn, increased 

the effective length of the seal. The seal would not leak unless the effective 

seal length required to maintain the seal supply pressure became longer than 

the actual seal length or pressure fluctuations caused a slug of fluid to  be 

discharged. 

Air ingestion was found to be related to  the surface wetability 

and Reynolds number of the seal. In a test series for spindle 1, in  which 

wetting conditions were present, t he  air ingestion became severe leading t o  

pulsating pressures which caused the series to be stopped. It was observed 

that a i r  ingestion and seal instability during this test began at a much lower 

Reynolds number than in previous tests. Care was  taken in all later tests 

to insure that the condition of shaft wetting did not reoccur by coating aii 
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test spindles with a very thin film of oil. 

Air ingestion may have a pronounced effect on h, in  the tur- 
, bulent region under certain operational conditions 

it is postulated that air ingestion, by displacing fluid at the root of the 

In series ZB, Figure 16, 

grooves, caused a decrease in  B with a consequent increase in  A 
demoastrated in  Figure 26. As shown in Figure 7 ,  for a Reynolds number of 

1000 and 8 

as E' 

3, a s m a l l  decrease in f3 produces a large increase in the 
I 

value of A T. This same discontinuity was observed to a smaller degree 

in  the data for spindle 3B and smaller yet in  spindle 4B. While the f3 for 

3B and 4B were similar to  that for ZB, the  groove widths were greater. It 

is believed that the wider grooves made the displacement of liquid from the 

r 

root of the groove more difficult and this prevented the change in  h E from 

being as great as in  ZB. As long as the seal's operational point is located 

along the flat portions of the curves in Figures 6 through 9 ,  a change in  B 

due to air ingestion produces only a s m a l l  change in the sealing coefficient, 

Also, the larger the value of 7,  the lower the change in B when air  ingestion 

is present. In order to minimize the effects of air ingestion and improve seal 

stability, it appears desirable to  select the seal geometry with a low a, high 

, and large B values as suggested in  Figures 6 through 9. 

N. LONG TERM SEAL OPEWTTI'2N 

To insure the feasibility of operating the visco seal for extended 

periods of t i m e ,  a series of long term tests of one to two hours duration were 

conducted for each of the spindles, beginning with 2B. In each case equi- 

librium WGS r$!~ched in 15 to 20 minutes of seal operation. N o  seal leakage 

was observed during these long term tests and air i nyas tkn  was not observed 

in laminar operation, In each of the  turbulent tests air  ingestion was observed 

to  s o m e  degree. However, a Reynolds number was reached where it appeared 

that long term operation of the seal was not desirable. The maximum Reynolds 

number at which the seal can operate in  an equilibrium condition in the 

turbulent zone is related to the spindle parameters. Further experimental 

studies are needed ?xfc?re definite conclusions can be made regarding the 
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Air bubbles grow to form a 
pocket at root of grooves 

Figure 26 .  Schematic representation of the change in B due to air 
ingestion. 
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maximum speed. 

V. OTHER EXPERIMENTAL RESULTS 

The effect of the eccentricity ratio on h, was predicted by 

McGrew and McHugh in equation (15) to vary as E varies from 1 to 2.5 for 

eccentricity ratios of 0 to 1. For laminar operation, however, 

in  the absence of air ingestion was found to be essentially independent 

of the eccentricity ratio, while in  turbulent operation A, was  noted to 

decrease slightly with a n  increase in  eccentricity ratio as can be observed 

in  Figure 14. It appears, therefore, unnecessary to incorporate the eccen- 

tricity ratio as a significant variable in the equation for A 
range. It was  noted, however, that eccentric operation of the seal in  the 

turbulent range tended to increase air ingestion. 

*E, 

c 

in  the laminar 

In Figure 27 the experimental data taken from a series of tests 

conducted by King, along with A computed by equation (97) for the thread 

geometry used by King, are shown. The predicted sealing coefficient is in 

good agreement with the 5D and 2E series of data in the turbulent range. In 

the laminar range the predicted value for the sealing coefficient is smaller 

than King's extrapolated data curves. It is difficult to draw conclusions 

about the laminar zone since King obtained limited data in this region. In 

series 3C and ilj, thz slopes cf King's experimental sealing coefficients are 

- 0 . 5 2 7  and -0.466, agreeing with the slopes of 12, in test series 5 ,  6,  and 

7 .  Data curves 5D and 2E have slopes in  the turbulent region of - 0.706 and 

-0.686, which are s imi l a r  to the values obtained in  test with spindles 1 

through 4B, as discussed in Chapter IV. From the experimental evidence 

reported in  this work, along witn aatd iiuiii Z c s ,  the indication is that for 

s m a l l  helix angles,  3 O  to  6" , the initial slope of the experimental sealing 

coefficient in  the turbulent zone is approximately -0.46. For helix angles 

of 7O to 14O corresponding to the range of optimum Q! recommendations of 

various investigators, the slope of the experimental sealing coefficient is 

approximately - 0.. 70. 

T 

i 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Based on the analytical laminar analysis of the visco seal 

developed by Boon and T a l ,  equations were  derived to predict the operation 

of the visco seal in the laminar and turbulent regions. The theoretical 

sealing coefficient developed by this analysis was compared with the experi- 

mental sealing coefficient obtained for ten experimental seals. In view of 

the observations and comparisons presented in  this work, the following 

conclusions are indicated: 
I 

1. The laminar analysis leading to equation (18), upon which the 

present analysis is based, agrees more closely with the experimental 

results in  laminar flow than any of the other analytical approaches con- 

sidered. 

2 .  The optimum screw geometry for laminar operation was not optimum 

for operation in the turbulent range. 

3 .  For screws which must operate in  both the laminar and turbulent 

range, smaller helix angles will provide more flexible operation in both 

regions. 

4 .  In turbulent operation the visco seals having s m a l l  helix angles 

operate with a greater degree of pressure stsbility 

5. Experimental A is essentially constant in laminar operation and 

in  agreement with equation (18). 

6 .  The transition Reynolds number at which A E begins to decrease, 

7 .  The slope of A, in the turbulent range for i i d i x  ezgles of 9.67" 

and 14.5" was approximately - 0.70,  while this value decreased to - 0.43 

for helix angles of 5.8 1 " . 

decresses with increasing 7 and is in  agreement with equation (99). 

8. The phenomenon of air  ingestion will be encountered in  turbulent 

operation. This condition was observed to be a function of shaft wetability, 

Reynolds number, seal geometry, and eccentricity ratio, but until more 

experiiiienta! c%ta are obtained this relationship cannot be precisely defined. 
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However, in  order to minimize the effects of air  ingestion on AE I large B 

and 7 along with s m a l l  a should be employed. 

9 .  An attempt was made in test series 5 ,  6 , and 7 to alleviate the 

problem of air  ingestion. End dams , as shown in  Figure 1 3 ,  were added to 

minimize the condition, although the end result was not as effective as was 

expected. The decrease in  a i r  ingestion was slight necessitating the con- 

clusion that more data are  needed before a concrete relationship between 

end dams and air  ingestion can be determined. 

10.  There exists a maximum Reynolds number beyond which long term 

operation is no longer feasible. However , more experimental data are 

needed before this value can be precisely defined. 

11. The frictional losses in the visco seal may be described with 

existing equations. In the laminar range the theoretical predictions by 

Stair closely approximate the experimental data. During turbulent operation 

the experimental data presented by Smith and Fuller, represented by equation 

( l o g ) ,  are 0 .951  t i m e s  the value of the friction parameter observed in  these 

tests. Therefore, the frictional losses  in  the seal may be calculated either 

for laminar or turbulent operation by: 

= 41Ly/, A /Da , 

and 

0 . 4 3  F.P. = 0.164n/Re 
0 C 

-I 1 7  - For laminar operation A E is essentially independent of E and under 

turbulent conditions the effect of sea l  eccentricity is sligni:. 

A number of aspects of the visco seal operation in the turbulent 

range require further and more intensive study. Specific problem areas 

requiring additional attention are as follows: 

1. More experimental data in the turbulent range for Reynolds numbers 

higher than 3000 are needed in  order to determine the maximum Reynolds 

number for 1 s ~ ~  term seal operation. 
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2 .  The construction of test spindles with helix angles of approximately 

5" and B ' s  in  the range from 10 to 20 are needed in  order to verify the obser- 

vations discussed in Chapter I1 concerning the relatively s m a l l  effect of B 

on A, for high Reynolds numbers and s m a l l  helix angles. 

3 .  A refinement of equation (97) for the calculation of A is needed T 
in order to  better describe the sealing coefficient in the turbulent region for 

s m a l l  helix angles. It is realized that the  two lines in Figure 5 may not be 

the best estimate for all geometric parameters. 

4 .  An investigation of the effects of grooves located in the housing 

rather than along the shaft would be desirable. This is based on the 

assumption that a smooth shaft located in the threaded housing would lessen 

the effects of air  ingestion on 
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APPENDIX A 

SAMPLE CALCULATIONS 

Equation (9 7) is the theoretical sealing coefficient for both laminar 

and turbulent operation for the visco seal. In order to calculate the sealing 

coefficient, the geometric configuration of the seal is needed. For this  

examp!e the parameters of test spindle 1 will be used. Hence: 

a =  14.5O 

t = 0 . 2 5 8 6  

B =  3 . 3 8  

T= 0 . 6 3 1  

c = 0 .0042  in. 

and 

D =  1.2430 in .  

From these data,  11,  12,  13,  and I in  equation (97) are evaluated as: 4 

= (1 - 7 )  t2 = 0 . 0 2 4 6 ,  I1 

3 7 . 2  I2 = p 0 1 = 1.535, 

R 3 
P = 2 . 5 9 5 ,  - 

T+ P3 (1 - 7 )  I3 - 

and 

= 0 . 3 6 4 .  1 1 -  r +  p -  7 + B3 (1 - 7 )  + 7(B - 1) 

7+P3 ( 1 - 7 )  

The critical Reynolds number defined by equation (99) is: 
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are both unity. 
and Fr2 When the operation of the seal is laminar, F g  

The t e rms  K and K5,  i n  equation (97), can be calculated as: 3 
4 

1 - Ff 
4 ] = 1  

2 - 1  
and 

- r 
c 
4 ] = 1  2 I '- 1 0 . 5 & ,  - 7.5 _ _  - . - 1  

+ K 4 =  2Fy 
and 

F 1 -  F ] =  1 
- 1.4 F n  - 1 

2 + - 3 
- 7.5 K5- 2Fq L 1 -  10.5F; 

3.92 F n  
\ t Therefore, the predicted sealing coefficient for laminar operation becomes: 

AT = K4 ( I l +  141 2 )+ K5 (,:I = 1 (4.50) + 1 (7.23) = 11.73, 

which is the s a m e  value as obtained from equation (18). When the flow in 

the seal becomes turbulent, F and/or F is greater than 1. Therefore, 5 77 
is evaluated from Figure 5 as: 

0.326 R e  
0.747 

Ft =(>) = = 0.00509 R e  
0.253 P I 

1 64 R e  
& S  P 

- 
or substituting for R e  from equation (103), 

P 

r Re 
C = 0.00509 L 2000 cosa FE Recrit. 

Similarly, 

] 
Fr( Recrit. 

Assume R e  = 400. Therefore, 
C 

0.747 
. 

0.754 

0.747 
=1.755 
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and 

0.754 
= 0.0101 [ 2000 sin 14.5 (Ej = 1.293 

from which 
r 

1.755 
lO.S(l.755) - 7.5 

= 0.639 I 1 -  1.755 + 
3.92(1.755)2 - 1.4(1.755) - 1 

and 

1.293 
lO.S(l.293) - 7.5 K 5 -  - 2(1.293) [ l -  

= 0.822 . 1 1 -  1.293 + 
3.92(1.293)2 - 1.4(1.293) - 1 

The theoretical sealing coefficient at Re = 400 becomes: 
C 

A = K4 (4.50) + K5 (7.23) = 0.639 (4.50) + 0.822 (7.23) = 8.81 . T 
Assume Re -- 1000. Then 

C 

0.746 
= 3.36 1000 

= 0.00509 [ 2000 cos 14.5 Ft 
and similarly, 

=2.69 , 

3.36 
10.5(3.36) - 7.5 - [ 1 -  K4- 2(3.36) 

= 0.365 , 1 1 -  3.36 
2 + 

3.92(3.36) - 1.4(3.36)- 1 

likewise 

K,= 0.447 . 
3 

The theoretical sealing coefficient at Re = 1000 becomes; 
C 
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AT = K4 (4.50) + K5 (7.23) = 0.365 (4.50) + 0.447 (7.23) = 4.885 . 

These calculations are repeated for a number of assumed Reynolds numbers 

in the desired range of operation from which the theoretical performance 

curve may be drawn. A plot of such a curve is presented in  Figure 14. 

A computer program is presented in Appendix B for the calculation of 

A as outlined above. 
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APPENDIX B 

COMPUTER PROGRAM FOR THE SEALING COEFFICIENT 

The computer program for A was written in  Fortran IV and run 

on an I.B.M. 7040 computer. The terms in the program are related to the 

nomenclature utilized in  this report a s  follows: 

T i 
I 

E = T  P, = K4 P4 = K5 

F = I4 

'3 3 
A =  Il 

B = I2 
' 'l='5 p2 = Frl 
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VISCO SEAL SEALING COEFFICIENT THEORETICAL A FOR LAMINAR 
AND TURBULENT OPERATION 

1 
2 
3 
4 
5 
6 
7 
10 
11 
12 
13 
14 
15 
16 

17 
20 
21 
22 
23 
24 
25 
26 
27 

30 
31 
32 
33 
34 

35 
36 
37 
40 
41 
42 
43 

98 
20 

99 
95 

97 

11 

12 

13 
14 

15 

16 

96 

10 

REAL LAMBDA 
FORMAT(//4X, lHC, 14X, 5HGAMMAl9X, SHALPHA, 13X14HBETAl 13X, lHDh 
PRINT 98 
==loo. 
DELRE=100. 
READ 99,C,GAMMAlALPHA,BETA,D 
PRINT 9 5, C , GAMMA ,ALPHA, BETA, D 
FORMAT(S(F10.6)) 
FORMAT (5 (F 1 0 .6 ,6X)) 
T=TAN(ALPHA/57.32) 
A= ( 1 5 A M  MA) *T * * 2 
%BETA** 3*GAMMA*T** 2 
E=BETA** 3/(GAMMA+BETA** 3 * (1 . -GAMMA)) 
F=T* (1 .-GAMMA+GAMMA*BETA- (GAMMA+BETA**3*(1 .-GAMMA)+GAMMA* 
l(BETA- 1 .))/(GAMMA+BETA**3*(1 .-GAMMA))) 
FORMAT (12X, 2HRE I 13X, 6HLAMBDA///) 
REC=4 1.1*SQRT((D/2 .)/((I .-GAMMA)*C+GAMMA*C*BETA)) 
PRINT 97 
DO 10 I=1,30 
IF((RE/REC)*COS(ALPHA/57.32)-. 575) 11 , 11,12 
PS1. 
G O T O  13 
Pl=.ouSuY --n,',nnn.*fRF/REC)*COS(ALPHA/57. { L U U U  ,a- 32))**.747 
~52Q./(2.*~1))*(l.-plj"(l00.5*~1-7.~)-t.'(l.-'pij/~~.~~~~?**~- 1.4*P1 
1- 1 .)) 
IF((RE/REC)*SIN(ALPHA/57.32)-. 22 5) 14,14,15 
P4= 1 
G O T O  16 
P2=. 0101*(2000 .*(RE/REC)*SIN(ALPHA/57.32))**. 754 
P4={3.//:2 .*P2))*~1.-P2/(10.5*P2-7. 5)+(1.-P2)/(3.92*P2**2-1.4*P2 
1- 1 .)) 
LAMBDA=P 5* (A+B)/F+P4*E/F 
PRINT 9 6 , RE I LAMBDA 
FORMAT(lOX, F6.0, lox, F8.4) 
IF(RE .GE .lo00 .) DELRE=400. 

GO TO 20 
END 

RE=RE+DELRE 

SENTRY 


